Problem 1.39

(a) Check the divergence theorem for the function $\mathbf{v}_{1}=r^{2} \hat{\mathbf{r}}$, using as your volume the sphere of radius R, centered at the origin.
(b) Do the same for $\mathbf{v}_{2}=\left(1 / r^{2}\right) \hat{\mathbf{r}}$. (If the answer surprises you, look back at Prob. 1.16.)

Solution

In spherical coordinates (r, ϕ, θ), where θ is the angle from the polar axis, the divergence of a vector function is

$$
\nabla \cdot \mathbf{v}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} v_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(v_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi}
$$

The divergence theorem (or Gauss's theorem) relates the volume integral of $\nabla \cdot \mathbf{v}$ to a closed surface integral.

$$
\iiint_{D} \nabla \cdot \mathbf{v} d V=\oiint_{\text {bdy } D} \mathbf{v} \cdot d \mathbf{S}
$$

Part (a)

If $\mathbf{v}=r^{2} \hat{\mathbf{r}}$ and D represents the sphere of radius R centered at the origin, then the left side evaluates to

$$
\begin{aligned}
\iiint_{D} \nabla \cdot \mathbf{v} d V & =\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{R}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \cdot r^{2}\right)\right] r^{2} \sin \theta d r d \phi d \theta \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{R}\left[\frac{1}{r^{2}}\left(4 r^{3}\right)\right] r^{2} \sin \theta d r d \phi d \theta \\
& =4 \int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{R} r^{3} \sin \theta d r d \phi d \theta \\
& =4\left(\int_{0}^{R} r^{3} d r\right)\left(\int_{0}^{2 \pi} d \phi\right)\left(\int_{0}^{\pi} \sin \theta d \theta\right) \\
& =4\left(\frac{R^{4}}{4}\right)(2 \pi)(2) \\
& =4 \pi R^{4}
\end{aligned}
$$

and the right side evaluates to

$$
\begin{aligned}
\oiint_{\text {bdy } D} \mathbf{v} \cdot d \mathbf{S} & =\left.\int_{0}^{\pi} \int_{0}^{2 \pi}\left(r^{2} \hat{\mathbf{r}}\right)\right|_{r=R} \cdot\left(\hat{\mathbf{r}} R^{2} \sin \theta d \phi d \theta\right) \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi}\left(R^{2} \hat{\mathbf{r}}\right) \cdot\left(\hat{\mathbf{r}} R^{2} \sin \theta d \phi d \theta\right) \\
& =R^{4} \int_{0}^{\pi} \int_{0}^{2 \pi} \sin \theta d \phi d \theta \\
& =4 \pi R^{4} .
\end{aligned}
$$

Part (b)

If $\mathbf{v}=\left(1 / r^{2}\right) \hat{\mathbf{r}}$ and D represents the sphere of radius R centered at the origin, then the left side evaluates to

$$
\begin{aligned}
\iiint_{D} \nabla \cdot \mathbf{v} d V & =\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{R}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \cdot \frac{1}{r^{2}}\right)\right] r^{2} \sin \theta d r d \phi d \theta \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{R}\left[\frac{1}{r^{2}}(0)\right] r^{2} \sin \theta d r d \phi d \theta \\
& =0
\end{aligned}
$$

and the right side evaluates to

$$
\begin{aligned}
\oiint_{\text {bdy } D} \mathbf{v} \cdot d \mathbf{S} & =\left.\int_{0}^{\pi} \int_{0}^{2 \pi}\left(\frac{1}{r^{2}} \hat{\mathbf{r}}\right)\right|_{r=R} \cdot\left(\hat{\mathbf{r}} R^{2} \sin \theta d \phi d \theta\right) \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi}\left(\frac{1}{R^{2}} \hat{\mathbf{r}}\right) \cdot\left(\hat{\mathbf{r}} R^{2} \sin \theta d \phi d \theta\right) \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi} \sin \theta d \phi d \theta \\
& =4 \pi
\end{aligned}
$$

Applying the formula for $\nabla \cdot \mathbf{v}$ leads to the incorrect answer due to the singularity at $r=0$. There's a radial source at the origin and no sinks, so the volume integral has to be nonzero. Based on the divergence theorem, though, one can conclude that

$$
\nabla \cdot \frac{\hat{\mathbf{r}}}{r^{2}}=4 \pi \delta(x) \delta(y) \delta(z)=4 \pi \delta(\mathbf{x})=4 \pi \delta(\mathbf{r})=4 \pi \delta^{3}(\mathbf{r}) .
$$

This way the volume integral gives the same answer.

$$
\iiint_{D} \nabla \cdot \mathbf{v} d V=\iiint_{D} 4 \pi \delta(\mathbf{x}) d V=4 \pi\left[\iiint_{D} \delta(\mathbf{x}) d V\right]=4 \pi(1)=4 \pi
$$

